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Abstract.  This paper describes a knowledge-based approach to automate a software 
design method for concurrent systems.  The approach uses multiple paradigms to 
represent knowledge embedded in the design method.  Semantic data modeling provides 
the means to represent concepts from a behavioral modeling technique, called Concurrent 
Object-Based Real-time Analysis (COBRA), which defines system behavior using 
data/control flow diagrams.  Entity-Relationship modeling is used to represent a design 
meta-model based on a design method, called COncurrent Design Approach for Real-
Time Systems (CODARTS), which represents concurrent designs as software 
architecture diagrams, task behavior specifications, and module specifications.  
Production rules provide the mechanism for codifying a set of CODARTS heuristics that 
can generate concurrent designs based on semantic concepts included in COBRA 
behavioral models and on entities and relationships included in CODARTS design meta-
models.  Together, the semantic data model, the entity-relationship model, and the 
production rules, when encoded using an expert-system shell, compose CODA, an 
automated designer's assistant.  Other forms of automated reasoning, such as knowledge-
based queries, can be used to check the correctness and completeness of generated 
designs with respect to properties defined in the CODARTS design meta-model.  CODA 
is applied to generate ten concurrent designs for four real-time problems. The paper 
reports the degree of automation achieved by CODA. The paper also evaluates the quality 
of generated designs by comparing the similarity between designs produced by CODA 
and human designs reported in the literature for the same problems. In addition, the paper 
compares CODA with four other approaches used to automate software design methods. 
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1. Introduction 
 
Software engineering researchers and practitioners strive to improve the quality of 
software products by increasing the discipline used during software development.  One 
means of increasing discipline entails the development and application of software design 
methods and supporting notations.  Some researchers attempt to enhance the utility of 
software design methods by providing automated support.  To date, such attempts rely 
upon either of two approaches: clustering algorithms or rule-based expert systems.  
Richer knowledge engineering models, integrating semantic data modeling with 
production rules, can potentially lead to more effective automation of software design 
methods.  This paper describes and evaluates one such approach to automating a software 
design method. 

Unlike previous approaches to design automation, the approach described and 
evaluated in this paper develops and exploits an underlying meta-model that can 
represent and reason about instances of requirements models, design models, and the 
relationships between the two. As a result, the approach described in this paper can check 
instances of designs for consistency and completeness against the meta-model, can track 
traceability between the requirements model and the evolving design model, can 
automatically capture design rationale, can take different design decisions depending on 
whether interacting with a novice or experienced designer, and can vary the generated 
design to account for general design guidelines or to account for differences in target 
implementation environment.  

Beyond its novel aspects, the design automation approach also fares quite well when 
considering its performance in two ways: (1) degree of automation and (2) quality of 
designs. The automated design mechanism consists of two main phases: model analysis 
and design generation. The model analysis phase aims to classify all symbols on a 
requirements model (represented with data/control flow diagrams), and to assign 
semantic tags to those symbols. For the models analyzed, 86% of the elements were 
classified without help from the designer. Further information about the intent, 
construction, and performance of the model analyzer can be found elsewhere [22]. The 
automated design generator is the main topic of the current paper. Of 1,571 design 
decisions required to generate ten concurrent designs, the design generator made 1,527, 
or 97%, without human assistance. Further, the quality of the generated designs was quite 
good, when compared against designs generated by human designers and documented in 
the literature. 

After describing in Section 2 the motivation for design automation research, the paper 
discusses in Section 3 some previous approaches to automate software design. In Section 
4, the paper briefly introduces CODARTS (COncurrent Design Approach for Real-Time 
Systems), a software design method for concurrent and real-time systems, and then in 
Section 5 proposes a knowledge-based approach to automate CODARTS.   The proposed 
approach leads directly to CODA (COncurrent Designer's Assistant), an automated 
designer's assistant.  In a fragment from a case study, presented in Section 6, the paper 
describes the use of CODA to generate a design for an automobile cruise-control 
subsystem.  Following the case study, the paper evaluates in Section 7 the performance of 
CODA when used to generate ten different concurrent designs for four real-time 
problems.  In Section 8, the paper discusses the contributions of CODA, as compared 
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with some previous approaches to automate software design methods. Section 9 considers 
future research. 

2. Benefits from Automating Software Design Methods 
 
A software design method provides a methodical, consistent, and teachable approach that 
defines what decisions a designer needs to make, when to make them, and, importantly, 
when to stop making decisions [1].  In addition, a software design method provides a 
consistent notation that can improve communication among those who must review and 
understand the meaning of a design.  In effect, a software design method encodes 
knowledge about good design practices into a form that designers can use to construct 
software designs. For these reasons, numerous software design methods have been 
proposed and practiced [2-15]. 

Using automated support for software design methods can lead to several benefits.   
First, automation can improve the rigor with which a software design method is applied.  
Automation can ensure that a designer does not overlook any of the myriad details 
associated with the design process.  Automation can establish that constraints levied on a 
design are satisfied, or that any unsatisfied constraints are brought to the designer's 
attention.  Second, automation can improve a designer's ability to generate alternate 
designs.  Since automation can speed up the generation of designs without sacrificing 
rigor, a designer can more readily produce several designs from one problem model.   
Third, automation can reduce the variability among the types of designs generated by 
various designers.  Reduced variability of form can increase the ability of customers, 
analysts, and programmers to understand and compare designs.  Fourth, automation can 
improve the performance of inexperienced designers both immediately, by making 
default decisions, and gradually, by explaining default design decisions to the designer. 
The work described in this paper was motivated by the desire to produce an automated 
design assistant that would realize these benefits, while also advancing the state-of-the-art 
in automated design systems. 

 

3. Previous Work on Automating Software Development 
 

A number of researchers have proposed approaches to automate software 
development. The field exhibits a long history of attempts to automatically generate 
operational programs from requirements specifications. Much of that work failed to 
achieve the difficult goals envisioned. Realizing the difficulty of automated software 
generation, several researchers turned to the application of artificial intelligence 
techniques to provide automated assistance for the software design phases alone. Some 
researchers aimed at high-level design, while others focused on detailed design. Most of 
this work was disconnected from any particular software design methods that human 
designers applied, and so the results have met with little success. Learning from these 
failures, some researchers have attempted to provide automated support for specific 
design methods with which human designers are already familiar. The work described in 
this paper can be classified in this latter category. The sections that follow provide a brief 
review of related research, discussed in three categories: (1) automatic programming, (2) 
automating software design, and (3) automating software design methods. 
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3.1 Automatic Programming. Unlike automated, design assistants, which help a 
human analyst complete a single, if essential, transformation in the software development 
process, automatic-programming systems [34-38] attempt to perform, without human 
intervention, every transformation required to generate a working implementation from 
an initial specification of user requirements. A different form of automatic programming, 
end-user programming, enables a computer-naive user to interact with an intelligent agent 
to select, exercise, evaluate, and modify an application program. End-user programming 
[39] requires no formal specification of requirements; in fact, the user need only bring the 
ideas in his head to a computer terminal to begin the process. 

Numerous problems block success with automatic programming.  Many automatic 
programming research projects seem to be limited to a single, small domain.  Even in 
such projects the number and type of transformations required to convert a moderate 
specification into a program can be enormous.  In addition, the automatic generation 
process produces a huge repository of data that can be difficult to manage.  Further, the 
knowledge contained in an automatic programming system is dispersed widely and, thus, 
modifying such a system can be challenging.  When an automatic programming system 
produces incorrect results, end users tend to examine the target code for the cause of the 
errors.  Such an approach to software debugging, reminiscent of programmers who would 
modify the object code produced by a faulty compiler, can be costly, risky, and 
unproductive.  Experience to date indicates that automatic programming will remain 
confined, for the foreseeable future, to single, small application domains.  

The end-user variant of automatic programming systems overcomes the limits of a 
single, small domain, but at a cost.  End-user programming systems require that a user 
sort through a range of problem-solving strategies in an effort to determine which 
approach might best meet his problem.  After selecting an approach, the user must 
interact with the program over a long period of time until the performance of the program 
meets the user's expectations.  As one possible outcome of this prolonged interaction, the 
user or the system might realize that the initial problem-solving strategy was, in fact, 
wrong.  The basic approach to end-user programming seems to be educated guess, 
followed by trial and error refinement.  Few users have the patience for such an approach 
to programming. 

3.2 Automating Software Design. Designing software requires that a designer 
possess both creativity and a capacity for complexity and detail.  A number of researchers 
investigate automated approaches to assist designers with the intricacies of software 
design, without unduly restricting the creative aspects of the design process.  Some 
researchers address design at the architectural level, while others consider assistance for 
detailed design.  For example, Fickas' Critter [40], based on an earlier tool known as 
Glitter [41], provides an automated assistant that attempts to bridge between requirements 
and design for composite systems, those containing a mixture of human, hardware, and 
software components.  Critter uses an artificial intelligence paradigm of state-based 
search, relying on a human user to provide the domain knowledge necessary to guide the 
search.  Critter encapsulates only domain-independent, design knowledge.  Critter and a 
human designer interact to develop a design to solve a domain-specific problem.  To date, 
the results with Critter do not appear encouraging.  Critter's limited reasoning techniques 
prevent its use on large software engineering problems; the analysis algorithms used in 
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Critter prove too slow for an interactive design system; Critter's knowledge-base and 
representation omit several classes of system design concepts. 

Progress to date on automating detailed design does not look any better. A number of 
other researchers investigated methods of providing automated assistance for detailed 
design. Most such methods assume the existence of one or more architectural designs.  
The assistance then focuses on locating and modifying, or on creating, components that 
can be fitted into one of the existing architectures.  In most cases, detail-design assistants 
[42-46] operate in a narrow domain. Automated assistants of this type might be useful 
once a designer has already developed a system architecture.  

3.3 Automating Software Design Methods. Some researchers attempt to provide 
automated support for familiar and well-established design methods. Four previous 
approaches are described here.  Three of the four approaches produce a sequential design, 
represented as structure charts, from a behavioral model represented by data flow 
diagrams (DFDs).  The fourth approach produces a concurrent design that to be mapped 
directly onto a design simulator. Each of these approaches is described below, followed 
by a brief discussion of advances made by the research presented in this paper.  

3.3.1 Cluster Analysis. A system called Computer-Aided Process Organization, or 
CAPO, embodies one approach to transform a data flow diagram into a structured design 
[16].  CAPO strives to free a designer from using structured design techniques, such as 
transform and transaction analysis, to create structure charts.  CAPO represents a data 
flow diagram as a flow graph, and then converts that flow graph into six matrices, used to 
compute an interdependency weight for the links joining each pair of transformations.  
Based upon the computed weights, CAPO converts the flow graph into a weighted, 
directed graph, and then uses a number of cluster analysis techniques to decompose that 
directed graph into a set of non-overlapping subgraphs. 

CAPO provides no automated traceability between the flow graph and the resulting 
structure charts; such mapping must be determined by human inspection.  CAPO also 
provides no automated assistance for checking the completeness and consistency of the 
proposed structure charts.  In addition, CAPO does not capture the design rationale used 
to propose the various structure charts.  In fact, wide variations in proposed structure 
charts can be obtained without changing the structure of the flow graphs by manipulating 
various numbers assigned to elements of the input flow graph.  CAPO generates alternate 
designs by using various clustering algorithms but does not consider aspects of the target 
environment that might suggest alternate designs.   

3.3.2 Specification-Transformation Expert System. Tsai and Ridge [17] describe a 
Specification-Transformation Expert System (STES) that automatically translates a 
specification model (expressed as data flow diagrams) into a sequential design (expressed 
as structure charts). The STES, implemented using the OPS5 expert-system shell, 
encapsulates the Structured Design method of Yourdon and Constantine [15] in expert-
system rules. STES represents both data flow diagrams and structure charts as structured 
facts.  STES uses several textbook heuristics, including coupling, cohesion, fan-in, and 
fan-out, to guide the design process.  Each data flow in a data flow diagram has an 
associated data dictionary entry that can be used by STES to gauge the degree of 
coupling between modules in a structure chart.  An expert system has difficulty 
determining cohesion among functions, and so STES consults a user for information 
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required to make inferences about functional cohesion.  STES attempts to maximize fan-
in and tries to achieve a moderate span of control. 

STES operates as a sequential set of phases.  First, STES factors the data flow 
diagram into afferent, efferent, and transform-centered branches.  This factoring results in 
a top-level design for the structure chart.  Second, STES refines each module at the next 
level of the structure chart using textbook guidelines for coupling, cohesion, fan-in, and 
fan-out.  Third, STES renders the resulting, multilevel, structure chart using a CASE 
system from Cadre Technologies. 

The approach embodied in STES limits its application to small designs, amenable to 
the sequential processing paradigm known as "inputs-processing-outputs".  In addition, 
the STES provides no automated checking for completeness and consistency of the 
generated structure chart.  Traceability between the data flow diagram and the structure 
chart must be verified manually.  STES does not capture the rationale for design 
decisions.  Though consulting the designer at various times, STES does not temper the 
nature of such consultation based on the designer's level of experience.  STES cannot 
generate alternate designs without changing the data flow diagram. 

3.3.3. Formal Rule Rewriting. Boloix, Sorenson, and Tremblay [18] describe another 
approach, based on an entity-aggregate-relationship-attribute (EARA) model, to 
automatically transform data flow diagrams to structure charts. Here, transformation 
rules, based on set theory, convert data flow diagrams, described formally at the lowest 
level of decomposition using an EARA model, into a formal description of structure 
charts.  A human analyst then improves the resulting structure charts. 

The EARA approach provides no automated completeness and consistency checking 
for the generated structure charts.  In addition, the approach fails to capture the rationale 
used to generate the structure charts.  Nor does the approach give consideration to 
generating alternate designs based upon variations in the intended run-time environment 
for the system under design.  When consulting the designer at numerous points in the 
design-generation process, the EARA method does not vary the scope and nature of this 
elicitation based on the designer's level of experience. 

3.3.4 SARA Design Apprentice. Another approach, reported in the literature by Lor 
and Berry [19], transforms requirements into a design, but without using structure charts 
as the target. This semi-automated, knowledge-based approach, developed by Lor as the 
subject of a Ph.D. dissertation in the context of the System ARchitects Apprentice 
(SARA), a joint development of researchers at UCLA and the University of Wisconsin 
[47], builds on the SARA environment by providing automated assistance to help a 
designer transform a requirements specification into a SARA structural model and graph 
model of behavior, or GMB.  Lor uses data flow diagrams and system verification 
diagrams to specify requirements.  System verification diagrams provide a stimulus-
response model of behavior that Lor uses to specify interactions among subsystems in a 
design.  Lor uses data flow diagrams mainly to specify the interior of subsystems. 

Lor chose a rule-based approach for his design assistant for two reasons.  First, since 
the current set of rules for transforming requirements into SARA designs remains 
incomplete, locking the knowledge into a procedural program appears premature.  
Second, the sequence of rule firings provides a natural explanation facility for design 
choices.  The design assistant encompasses 21 rules for building the structural model, 59 
for synthesizing the control domain, and 37 for modeling the data domain.  Lor's 
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approach synthesizes a SARA structural model through a direct translation of the 
hierarchy of data flow diagrams; at the lowest level of decomposition, the data flows map 
to SARA domain primitives.  Lor's approach also creates a SARA GMB from the 
stimulus-response model provided by the system verification diagrams, as well as from 
the data flow diagrams. 

Lor reports that his research provides a better understanding of, and a methodical 
approach to, designing systems in the SARA environment.  The rules encapsulated in the 
design assistant can be called syntactically complete because every requirements 
construct is covered.  The rules cannot, however, be called semantically complete; 
alternative designs cannot be considered and the rules cannot always map each 
requirements element to the most concise design construct.  A human designer must 
answer queries as the design progresses (to provide needed information and to indicate 
preferences), and must improve the generated design.  Given the same requirements 
specification technique (i.e., system verification diagrams and data flow diagrams), Lor 
asserts that his approach could be adapted to other design representations by rewriting the 
rule consequents; however, since the most crucial step in Lor's approach entails 
developing formal definitions, represented by SARA design constructs, for every 
construct in his requirements language, adapting to another design representation would 
require that this most crucial step be repeated. 

3.3.5 Advances Over Previous Approaches. The work described in this paper provides 
several advances over the previous, related research. First, the current work provides an 
underlying meta-model that describes components, relationships, and constraints that 
designs must satisfy. This allows automated checking of design instances for 
completeness and consistency with respect to the meta-model. Such checking enables 
errors that can easily be made by human designers to be uncovered. Of course, the 
automated design generator included in the approach generates designs that should 
readily pass the completeness and consistency checks. Second, the current work provides 
automatic capture of design rationale. This allows a human designer to understand how a 
design decision was made. Such rationale can be used when an experienced designer 
changes a design, or when an inexperienced designer is learning the design method. 
Third, the current work provides two modes of operation: experienced and inexperienced. 
In experienced mode, the design generator will elicit information and assistance from the 
designer, as needed to address various subtleties in an evolving design, or to seek 
additional information that can help to resolve ambiguities or to provide a better design. 
In the inexperienced mode, the design generator uses default assumptions to address 
subtleties, to resolve ambiguities, and to make decisions about design optimizations. 
Finally, the current work enables the generation of designs that depend on characteristics 
of the target hardware and operating system. Using this feature, a designer can generate 
design variations more suited to particular target environments. A more detailed 
comparison between the current work and these previous approaches is given in Section 
8, Discussion. 

4. CODARTS: A Software Design Method for Real-time Systems 
 
CODARTS, or COncurrent Design Approach for Real-Time Systems, is a software 
design method for concurrent and real-time systems. CODARTS [7] uses criteria for 
information hiding and task structuring to form a concurrent design, including both tasks 
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and information-hiding modules, [20] from a behavioral specification.  CODARTS 
begins by using COBRA (Concurrent Object-Based Real-time Analysis) to analyze and 
model a system under design.  COBRA uses RTSA (Real-Time Structured Analysis) 
notation, as summarized in Figure 1.  However, COBRA provides an alternative to the 
RTSA [8,14] decomposition strategy that includes guidelines for developing an 
environmental model based on the system context diagram, and defines structuring 
criteria for decomposing a system into subsystems and for determining objects and 
functions in each subsystem.  Finally, COBRA includes a behavioral approach, based on 
event sequencing scenarios, for determining how the objects and functions within a 
subsystem interact.  A COBRA specification is documented as a hierarchical data/control 
flow diagram (D/CFD) and a data dictionary. A D/CFD has a state-transition diagram for 
each control transformation and a mini-specification for each data transformation. Figure 
15 shows a fragment of a COBRA D/CFD for an automobile cruise-control application. 

Once a COBRA specification exists, CODARTS provides four steps for generating a 
concurrent design: (1) Task Structuring, (2) Task Interface Definition, (3) Module 
Structuring, and (4) Task and Module Integration.  First, CODARTS task structuring 

criteria assist a designer in 
examining a COBRA 
specification to identify 
concurrent tasks.  The task 
structuring criteria, 
consisting of a set of 
heuristics derived from 
experience obtained in the 
design of concurrent 
systems, can be grouped into 
four categories: input/output 
task structuring criteria, 
internal task structuring 
criteria, task cohesion 
criteria, and task priority 
criteria.  In a given design, a 
task may exhibit several 
criteria and many tasks may 
exhibit the same criteria. 

The input/output and 
internal task structuring criteria help to identify tasks based upon how and when a task is 
activated: periodically, based on the need to poll a device or to perform a calculation, or 
asynchronously, based on an external device interrupt or on an internal event.  The task 
cohesion criteria help a designer to identify COBRA objects and functions that can be 
combined together in the same task. Single tasks might be formed wherever a set of 
transformations must be performed sequentially (sequential cohesion). When a set of 
tasks can be executed with the same period or with a harmonic period, those tasks might 
also be combined (temporal cohesion). When a set of transformations performs closely 
related functions, those transformations might be included in the same task (functional 

Data
Transformation

 Control
Transformation

Terminator

Data
Store

Data
Flow

Event
Flow

Two-Way
Data Flow

Figure 1. Syntactic Elements for Composing COBRA 
Data/control Flow Diagrams 



Draft 08/28/00 

 8

cohesion).  The task priority criteria prevent a designer from combining tasks that might 
need to execute at substantially differing priorities. 

As a second step, CODARTS provides guidelines for defining interfaces between 
tasks.  Once tasks are defined, data and event flows from a COBRA specification can be 
mapped to inter-task signals or to tightly or loosely coupled messages, depending on the 
synchronization requirements between specific pairs of tasks. 

As a third step, CODARTS includes criteria, based on information hiding, to help a 
designer identify modules from the objects and functions in a COBRA specification.  In 
general, the CODARTS module structuring criteria form modules to hide the details of 
device characteristics, data structures, state-transition diagrams, and algorithms. 

Finally, once both the task and module views of a concurrent design exist, 
CODARTS provides guidelines to help a designer combine the independent views into a 
single, consistent design.  Each task represents a separate thread of control, activated by 

some event: an interrupt, a timer, an 
internal signal, or a message arrival.  
Each module provides operations 
that can be accessed by the tasks in 
a design. CODARTS helps a 
designer establish the control flow 
from events to tasks and then on to 
operations within modules. 

The results of applying 
CODARTS are documented in the 
form of a software architecture 
diagram, and an accompanying set 
of task and module specifications.  
Some of the key icons in the 
graphical notation are illustrated in 
Figure 2. The contents of the task 
and module specifications are 
discussed elsewhere [11]. Figure 16 
gives an example of a CODARTS 
design corresponding to the 
COBRA requirements model shown 
in Figure 15. 

5. Automating CODARTS 
 
CODARTS provides design-

structuring criteria to help a designer in structuring a software system into components. 
These criteria, expressed as heuristics or guidelines, are based on real-world experience 
in designing concurrent and real-time systems, and have evolved over several refinements 
of the design method [30, g86, ga89, 7]. Furthermore, the criteria have been validated 
through widespread use on industrial projects [cg91]. As the CODARTS structuring 
criteria are aimed at a human designer, they are described textually in considerable detail 
with the aid of examples [7]. A key challenge for automating CODARTS was to codify 
these natural language heuristics as production rules that could be processed by a 

a.  Task

b.  Queue and Queued Message

c.  Tightly Coupled Message

d.  Tightly Coupled Message with  Reply

e.  Event (i.e., interrupt, timer expiration, or
      software signal)

f.  Data or Operation Invocation

g.  Information Hiding Module
with four Operations

Figure 2. Some Key Icons from the CODARTS 
Graphical Notation 
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machine, capturing all the different cases, and subtleties, addressed by the heuristics. 
Once codified, and encoded using an expert system shell, this design knowledge forms 
the basis for CODA, an automated assistant for designers of concurrent and real-time 
systems.  The following discussion explains the ideas underlying CODA. 

5.1 Overview of CODA.  Figure 3 illustrates one view of the architecture for 
CODA. Given a data/control flow diagram and a description of the intended target 
environment, along with any design guidelines, CODA largely automates the process of 
generating a concurrent design.  The resulting design consists of a software architecture 
diagram, initial specifications for tasks and for information hiding modules, and 
consistency and completeness analyses of the generated design.  Conceptually, CODA 
consists of two main components: a model analyzer and a design generator.  The model 
analyzer converts a syntactically described flow diagram into a flow diagram annotated 
with semantic concepts from COBRA (see Figure 15 for an example of an annotated flow 
diagram).  The model analyzer consists of four knowledge bases: (1) an analysis meta-
model that describes relationships among semantic concepts within a specific analysis 
method, (2) concept classification rules that perform inferences on instances of semantic 
concepts within the analysis meta-model, (3) axioms that define relationships required 
and prohibited among semantic concepts in the analysis meta-model, and (4) information 
elicitation rules that can be used to obtain information not readily available from visual 
representations of the analysis meta-model. For CODA to support a specific analysis 
method, these four knowledge bases must be created. In the work discussed in this paper, 
knowledge bases were built to support Concurrent Object-Based Real-time Analysis, or 
COBRA [7]. The model analyzer, discussed in detail elsewhere [21-22], is described 
briefly in Section 5.2. 

The design generator uses design knowledge from CODARTS to transform an 
annotated flow diagram into a concurrent design.  The current paper focuses on the 
design generator, highlighted in Figure 3, which consists of a design meta-model that 
encodes the entities, attributes, and relationships available to construct instances of 
CODARTS designs, and three knowledge bases that encode CODARTS design 
heuristics, process constraints, and consistency and completeness constraints, 
respectively.  Section 5.3 describes the CODARTS design meta-model, the related 
consistency and completeness constraints, and the characteristics of target environments, 
as seen by CODA.  Section 5.4 explains how CODARTS heuristics can be represented as 
rule sets. Section 5.5 discusses how constraints from the CODARTS meta-model can be 
represented as predicates, and how those predicates can be encoded as object-oriented 
queries that can be applied to instances of CODARTS designs. Section 5.6 gives a brief 
explanation of the techniques used to capture and access design rationale. 

5.2 The CODA Model Analyzer. The starting point for CODA consists of a 
data/control flow diagram represented using the syntactic elements of RTSA, as 
illustrated in Figure 1.  Before the CODA design generator can apply CODARTS 
heuristics, the model analyzer, working together with the designer where necessary, must 
classify the syntactical elements from RTSA flow diagrams as semantic concepts in 
COBRA.  To accomplish this task, the model analyzer depends upon a COBRA meta-
model, a concept classifier and axiom checker, and an information elicitor.  

The COBRA meta-model, described elsewhere [21], comprises a taxonomy of 
semantic concepts [23-24]. Each concept in the taxonomy can be constrained by a set of 



D
raft 08/28/00 

 
10

axiom
s [25].  Each leaf-level concept in the taxonom

y m
ust satisfy all axiom

s defined for 
the interm

ediate concepts along all its inheritance paths to the top of the taxonom
y.  

SOFTWARE ARCHITECTURE
DIAGRAM

UNDERSTANDING THE PROBLEM MODEL

Design
Analyses

MODEL ANALYZER

Data Flow Diagram/
Control Flow Diagram

(DFD/CFD)

Task
Behavior

Specification

Information
Hiding Module
Specification

COBRA Meta-Model

Concept Classifier

Axiom Checker

Information Elicitor

ANNOTATED DFD / CFD

CODARTS Design Meta-Model

Design-Generation Knowledge

Design-Process Knowledge

Design-Checking Knowledge

DESIGN GENERATOR

Target
Environment &

Design
Guidelines

GENERATING THE CONCURRENT DESIGN

DESIGNER
INTERACTIONS

See Figure 16 for an
Example Software

Architecture Diagram

See Figure 15 for an
Example DFD/CFD

[Annotations in Square
Brackets]

 
Figure 3. C

onceptual A
rchitecture for C

oncurrent D
esigner’s A

ssistant, C
O

D
A

 



Draft 08/28/00 

 11

The actual classification of concepts on the flow diagram occurs through use of an 
automated concept classifier [26].  The concept classifier developed for CODA consists 
of a four-stage inference network [27], illustrated in Figure 4.  The classifier examines 
RTSA syntactic elements and classifies each as a concept in the COBRA taxonomy.  
Figure 4 identifies the 36 leaf-level concepts in the COBRA taxonomy.  Where ambiguity 
exists during classification, the concept classifier consults the designer.  Where the 
designer cannot resolve the ambiguity, the concept classifier makes default decisions that 
have been encoded in the classification rules as the most likely outcome in the particular 
situation.  To verify the work of the concept classifier, an axiom checker can ensure that 
every RTSA element is properly classified as one of the 36 COBRA semantic concepts 
shown in Figure 4, and can ensure that each concept satisfies all required axioms. 

The final component of the model analyzer elicits information from the designer, 
where such information cannot be derived directly from a flow diagram.  In addition, 
newly classified concepts might require additional information in order to make 
subsequent design decisions.  For example, if a control flow is classified as a timer, a 
positive period must be supplied for the timer. The information elicitor automatically 
identifies when additional information is necessary, prompts the designer for the 
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information, and performs consistency checks on the information supplied. Figure 15 
illustrates the output of the COBRA model analyzer for a fragment of a D/CFD for an 
automobile cruise-control system. 

5.3 The CODARTS Design Meta-Model. The CODARTS design meta-model 
provides a basis for describing concurrent designs and for reasoning about those designs 
using automated methods.  The design meta-model also provides for traceability between 
concurrent designs and elements of the data/control flow diagrams from which the design 
is generated.  In addition, the design meta-model allows design decisions and associated 
rationale to be captured and organized automatically.  

The CODARTS design meta-model consists of entities, attributes, relationships, 
and constraints. The entities, attributes, and relationships can be visualized conveniently 
using an Entity-Relationship (ER) diagram. The constraints cannot be shown in a visually 
appealing form. One class of constraints restricts the possible mappings between 
elements from a COBRA behavioral model and elements in a corresponding concurrent 
design.  The second class of constraints defines restrictions among relationships in a 
concurrent design. These constraints permit instances of a design to be checked for 
consistency and completeness.  

Figure 5 illustrates the entities and associated attributes that compose the meta-
model for concurrent designs.  The figure also shows some inheritance relationships 
among those entities, and depicts two key relationships in which all design entities 
participate.  Every entity in the design meta-model is a named design element that 
possesses a unique object identifier within a given design.  Each design element can track 
every decision made about it; thus, CODA captures design rationale, including the name 

of the rule (see Section 5.4) 
that executed the decision and 
the specific actions taken to 
update the design.  In 
addition, each design element 
must trace from one (or more) 
specification element in a 
COBRA meta-model; 
however, certain constraints, 
given in Table 1, restrict this 
relationship to those that 
make sense.  The remaining 
entities in Figure 5 depict the 
semantic elements used in 
CODARTS to describe 
concurrent designs. In 
general, CODARTS designs 
consist of three types of 
entities: (1) repeatable design 
elements, (2) directed design 
elements, and (3) auxiliary 
design elements.  Repeatable 
design elements include the 

Figure 5. E-R Model of Design Entities Composing the 
CODARTS Design Meta-Model 

Design ElementTraces
To/From

Specification
Element Tracks

name object
identifier

IS-APriority Queue

Queue

Repeatable Design
Element

Directed Design
Element

Parameter

Operation

IS-AIS-A

Task

IHM Data

Tightly-Coupled
Message

Message

IS-A

Event

Queued Message

cardinality

type

type

periods

priority

priority

instance

from

to

processor

type

interval

rule name

Decision

action

rationale

N N
N1

priority

Message
Data



Draft 08/28/00 

 13

main structural elements of a concurrent design: tasks and information-hiding modules.  
Directed design elements link together the structural components of a design.  For 
example, messages are sent between tasks.  Two types of messages can be exchanged 
between tasks: (1) queued messages and (2) tightly coupled messages. 

 
Table 1.  Constraints on Traceability from COBRA Behavioral Models to Concurrent 

Designs 
 

Design Element Traces from COBRA Semantic Concept(s) 
Task Control or Data Transformation 
Information Hiding Module Data Store, Data Flow, Control or Data Transformation, 

Two-Way Data Flow 
Queue or Priority Queue Signal, Stimulus, Control or Data Transformation 
Message or Message Data Control Event Flow, Internal Data Flow, Signal 
Event Control Event Flow, Normally-Named Event Flow 
Data External Data Flow 
Operation Data-Store Data Flow, External Data Flow, Interrupt, 

Transformation, Update 
Parameter Control Event Flow, Data Store, External Data Flow, 

Internal Data Flow, Signal 
 

The "Tracks" and "Traces" relationships depicted in Figure 5 apply to every 
design element. The "Tracks" relationship enables a history of design decisions to be 
associated with each element in a design. Similarly, the "Traces" relationship enables 
each design element to be associated with the flow-diagram symbols from which the 
element is derived. Other semantic relationships between design elements are depicted 
using a separate E-R diagram, shown as Figure 6. Entities with the same name on both 
Figure 5 and Figure 6 represent the same design element, so the two E-R diagrams can be 
understood as two different views of a more complex model. Each relationship in Figure 
6 should be understood to be bi-directional, including both the relationship as shown and 
its inverse.  For the most part, the relationships shown in Figure 6 can be read intuitively.  

Consider the relationships between Task and Message, as depicted on Figure 6. A 
Task can send and receive many messages, and each message must be sent and received 
by one Task.  Further, a message may include Message Data, which carries information 
between tasks.  Messages may be of two types, a Queued Message, which can be sent 
without causing the sending Task to block, or a Tightly Coupled Message, which causes 
the sending Task to block until the receiving Task accepts the message. Some messages 
require a reply, as depicted by the Answers relationship. Note that a Tightly Coupled 
Message answers a message; thus, all replies cause the sending Task to block until the 
receiving Task has accepted the reply. 

While Figure 6 does depict cardinality constraints, more complex constraints do 
not appear on the E-R diagram.  For example, each module in a given design is either 
contained in a task or is accessed by a task or another module.  Such complex constraints 
are represented as predicates that must hold for valid instances of the design meta-model.  
These predicates, when expressed as knowledge-based queries, provide the design 
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generator with the knowledge needed to check designs for consistency and completeness 
with respect to the design meta-model.  

While many design decisions can be taken in the abstract, depending only on 
concepts represented in the design meta-model, other design decisions must account for 
specific characteristics of the target environment in which the design will execute.  To 
account for such characteristics, CODA enables the designer to specify, for instance, the 
number of processors involved in a system, the type of inter-process communications 
mechanisms available, and the number of available task priority levels. 

 
 

Figure 6. E-R Model of Design Relationships Composing the CODARTS Design Meta-
Model 
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5.4 Design Generation Knowledge. Using the semantic concepts represented in the 
COBRA meta-model and the CODARTS design meta-model, along with some 
characteristics of the intended target environment, a human designer can apply various 
heuristics from the CODARTS design method to produce a concurrent design from a 
COBRA behavioral model.  To automate design generation, heuristics from CODARTS 
must be formulated as expert-system rules [28] that can reason about data/control flow 
diagrams and evolving concurrent designs. The specific rules contained in CODA were 
developed from a natural language description of CODARTS design heuristics [7]. Since 
the requirements meta-model and the design meta-model were constructed from concepts 
contained in COBRA and CODARTS, the CODA rules can express CODARTS 
heuristics in terms relatively familiar to a human designer. Each rule consists of an if-
then construction, where the antecedent matches a pattern of concepts in the annotated 
flow diagram, entities and relationships in the evolving design, or some combination. 
Many rules proved to be very simple with only a single predicate in the antecedent. In 
some rules, a conjunction of as many as ten predicates was required to correctly specify 
the antecedent. Some complexity also arose associated with guiding the firing order when 
multiple rules might be satisfied simultaneously. To address these situations, a careful 
analysis of the CODARTS design process, as applied by human designers, identified 
which design criteria should take precedence over other criteria. This knowledge was 
encoded as six precedence levels. Each of the 126 design-generation rules was assigned 
one of the six levels. By comparing the designs produced by CODA against designs 
produced by human designers, as reported in the literature, the expert system rules were 
tested for validity. Where differences appeared between the designs generated by CODA 
and the designs reported in the literature, the reasons for the differences were identified 
and analyzed. Section 7.3 provides more detail related to this validation. 

The expert system rules that formalized the CODARTS design heuristics were 
encoded as a partitioned repository of design-generation knowledge that the CODA 
design generator uses to transform flow diagrams into designs.  Each knowledge partition 
corresponds to a step in the CODARTS design method: (1) Task Structuring, (2) Task-
Interface Definition, (3) Information-Hiding Module Structuring, and (4) Task and 
Module Integration.  The execution of these four knowledge partitions must meet the 
process constraints imposed by the CODARTS design method. Task Structuring and 
Module Structuring are independent activities that must both be completed prior to 
integrating the task and module views.  Task Structuring must be completed prior to 
defining the interfaces between tasks. A more detailed discussion follows for each 
knowledge partition.  

5.4.1 Task Structuring Knowledge. Task structuring knowledge, as encoded for use 
by the CODA design generator, consists of a sequence of four decision-making 
processes: (1) identify candidate tasks, (2) allocate remaining transformations to tasks, 
(3) consider task mergers, and (4) consider resource monitors. Each of these processes 
consists of a set of production rules that search the flow diagram and the emerging design 
for matching patterns.  When a matching pattern is found, the associated rule is activated, 
updating the emerging design according to actions specified in the rule. The first 
decision-making process, consisting of 11 rules, applies CODARTS heuristics to identify 
those transformations that can be allocated to input/output tasks and to internal tasks.  
The second process, encompassing nine rules, applies selected CODARTS cohesion 
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criteria to allocate each of the remaining transformations to one or more of the tasks 
identified during the first process.  The third process, comprising eight rules, examines 
the tentative task structure, applying additional CODARTS cohesion criteria to reduce the 
number of tasks by merging tasks where appropriate.  The final process, requiring only 
two rules, identifies instances where a resource monitor task is needed to arbitrate access 
by multiple tasks to a single device.  A few examples, taken from a case study presented 
in Section 5, will illustrate how CODARTS task structuring knowledge can be 
represented as production rules. 

Figure 7 shows how a transformation in a flow diagram model leads to the 
generation of an input/output task.  Figure 7 (a) shows a transformation, Cruise Control 
Lever, activated by an interrupt.  During preprocessing by the CODA model analyzer, 
Cruise Control Lever was classified as an "Asynchronous Device Input Object".  Since 
such an object inherits the characteristics of an "Asynchronous Device Interface Object", 
Cruise Control Lever satisfies the antecedent of the rule shown in Figure 7 (c).  As a 
consequence of this rule, Figure 7 (b) shows that an asynchronous-device input task, [task 
A], is created and that a traceability link, [Traces], is established between the new task 
and the transformation.  Not shown in Figure 7, the decision and rationale are noted and 
added to the design history for the new task.  Using the rule 
shown in Figure 7 (c) and two similar rules, the CODA design generator can identify all 
transformations that lead to CODARTS input/output tasks.  Eight additional rules are 

Cruise
Control
Lever
1.1.4

Cruise
Control
Input
Lever

Interrupt

Cruise
Control

Requests

Cruise
Control
Lever

Input Task

if
transformation T is an Asynchronous Device Interface Object

then
if transformation T is an Asynchronous Device Input Object
then create an asynchronous device-input task A
elseif transformation T is an Asynchronous Device Output Object
then create an asynchronous device-ouput task A
else create an asynchronous device-input/ouput task A
fi
record the decision and rationale in the design history for task A
denote the traceability between the transformation T and task A

fi

[transformation T] [task A]

[Traces]

(a) Flow Diagram Fragment (b) CODARTS Design Fragment

(c) Task Structuring Rule - Asynchronous Device Interface

Figure 7. Heuristic for Generating an Input/Output Task 
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required to apply CODARTS criteria for structuring internal tasks.
Figure 8 describes one of the rules encoding the CODARTS criteria for identifying 

internal tasks.  Figure 8 (a) shows a transformation, Maintain Speed, which was 
previously classified by the CODA model analyzer as an "Enabled Periodic Function".  
The rule defined in Figure 8 (c), matches transformations that are enabled and disabled 
by a control object and that execute periodically when enabled.  The rule in Figure 8 (c) 
creates a task, shown as a design fragment in Figure 8 (b), and links that task to the 

appropriate transformation from the flow diagram model. 
Figure 9 illustrates how two CODARTS criteria, functional cohesion and temporal 

cohesion, can be combined into a single rule that can merge tasks.  When periodic tasks 
of identical type (functional cohesion) exhibit identical execution intervals  (temporal 
cohesion) and each of those tasks represents a single instance, the tasks can be merged 
into one task.  Figure 9 (c) specifies the rule that recognizes when tasks can be merged.  
Before the rule execution, Figure 9 (a), the design consists of two periodic device-input 
tasks, each of which executes every 100 milliseconds.  After the rule execution, Figure 9 
(b), these tasks have been merged to form a single task. 

  5.4.2 Task-Interface Definition Knowledge. After determining the tasks in a 
concurrent design, the CODA design generator can identify the subset of data and event 
flows exchanged among the tasks and can then map those flows to specific 
communication mechanisms between pairs of tasks.  The CODARTS design method 
provides guidelines for selecting appropriate interface mechanisms.  These guidelines can 
be represented as production rules encoded within five decision-making processes: (1) 
allocate external interfaces, (2) allocate control and event flows, (3) allocate data flows, 
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Enable
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Timer
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Speed
Task

if
transformation T is an Enabled Periodic Function

then
create an enabled periodic task P
record the decision and rationale in the design history for task P
denote the traceability between transformation T and task P

fi

[transformation T] [task P]
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(c) Task Structuring Rule - Enabled Periodic Algorithm
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Figure 8. Rule for Generating an Internal Task 
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(4) elicit message priorities, and (5) allocate queue interfaces.  The first process, 
consisting of five rules, creates the timer and interrupt events needed to activate particular 
tasks, maps data flows between tasks and devices into appropriate input and output data, 
and identifies the data and event flows exchanged between tasks.  The second process, 
requiring eight rules, decides how to allocate event flows and control flows that are 
exchanged between tasks.  Such flows can be allocated to software interrupts, to tightly 
coupled messages, or to queued messages.  The third process uses 12 rules to map data 
flows onto either tightly coupled messages or queued messages.  The fourth process has 
one rule that allows an experienced designer to indicate the relative priority of multiple 
messages arriving at specific tasks.  The final process decides upon appropriate interfaces 
to receive queued messages.  Such decisions depend upon the type of mechanisms 
available in the target environment and upon the priorities assigned when multiple 
queued messages arrive at a single task.  Some examples will show how the CODARTS 

guidelines can be encoded as production rules. 
Figure 10 illustrates one rule for mapping an event flow onto a queued message 

exchanged between two tasks.  The rule, defined in Figure 10 (c), recognizes the case 
where an event flows from a device-input object in one task to a control object in another 
task.  In such cases, provided that the control object is not locked in one state awaiting 
the incoming event, the event flow can be mapped onto a queued message that is sent by 
the device-input task and received by the control task.  One such case is shown in Figure 
10 (a), where a periodic device-input task, Monitor Auto Sensors, traces to a periodic 
device-input object, Engine, that sends an event flow, Engine Off, to a control object, 
Cruise Control, that traces to a control task of the same name.  After the execution of the 
rule given in Figure 10 (c), the CODA design generator updates the design fragment, as 
illustrated in Figure 10 (b), to include a new queued message, Sensor Status Message, 

Figure 9. Rule Applying Functional and Temporal Cohesion to Merge Two Tasks 
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and two appropriate relationships, "Sends" and "Receives".  In addition, the design 
generator records the traceability between Engine Off and the new Sensor Status 
Message, along with the decision and rationale.  Once a message exists, additional event 
flows, such as Engine On in Figures 10 (a) and (b), between the same set of tasks are 
allocated as event types in a parameter of the message. 

Figure 11 (a) depicts a design fragment where one task, Cruise Control, receives 
queued messages from three sending tasks.  In order to ensure that no incoming messages 
are lost and that each message is processed in an appropriate order, Cruise Control 
requires a queue to hold arriving messages.  Figure 11 (c) defines one rule that generates 
a queue in a specific circumstance.  When a task receives multiple queued messages at 
the same priority and the target environment provides message queues, a queue can be 

Figure 10. Rule to Map Event Flow to a Queued Message 
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created to hold the incoming messages until the receiving task can consume them, as 
illustrated in Figure 11 (b).  An alternative mechanism can be selected using a different 
rule when the target environment does not provide message queues. 

While many event flows and data flows can be mapped to queued messages, the 
CODARTS guidelines identify some situations requiring the use of tightly coupled 
messages.  These guidelines can also be represented using production rules. 

 

if
task C receives queued messages at a single priority and
message queues are available in the target environment

then
create a queue Q for task C
establish the design relationship task C consumes queue Q
record the decision and rationale in the design history for queue Q
for each queued message M to task C

establish the design relationship queue Q holds message M
record the descision and rationale in the design history for queue Q

rof
fi

(c) Task Interface-Definition Rule - Use Single Priority Queues to Order Messages

(a) Design Fragment Before Rule Execution
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5.4.3 Information-Hiding Module Structuring Knowledge. The CODARTS design 
method permits a designer to define information-hiding modules from a flow diagram 
model.  This activity, called module structuring, can be carried out independently from 
the structuring of tasks.  The CODA design generator provides support for module 
structuring by encoding CODARTS module-structuring guidelines into six decision-
making processes: (1) identify candidate modules, (2) allocate functions to data-
abstraction modules, (3) allocate remaining transformations to modules, (4) allocate 
isolated elements to modules, (5) consider combining modules, and (6) determine module 
operations.  The first process contains seven rules that identify nodes on a flow diagram 
that can be allocated to software modules.  The second process consists of five rules that 
find specific transformations that can be mapped to functions provided by data-
abstraction modules created during the first process.  The third and fourth processes, each 
consisting of three rules, determine how to map the remaining transformations and data 
stores to software modules, either allocating each node to an existing module or to a new 
module.  The fifth process, available only to experienced designers, contains one rule to 
identify situations in which a designer might prefer to combine software modules in the 
emerging design.  Each such situation is referred to the designer for a decision.  The final 
process, requiring 21 rules, determines the specific operations provided by each module 
in the design, along with the parameters required by each operation.  Two examples 
illustrate how CODARTS module-structuring guidelines can be represented as 
knowledge-based rules. 

Figure 12 (c) gives a rule that encodes one of the CODARTS heuristics used to 
identify an information-hiding module from nodes in a flow diagram model.  In this case, 

as shown in Figure 13 
(a), any data store, such 
as Desired Speed, which 
is accessed by multiple 
transformations, such as 
Clear Desired Speed, 
Maintain Speed, and 
Select Desired Speed, 
serves as the basis for a 
data-abstraction module.  
As a result of executing 
this rule on the flow 
diagram fragment shown 
in Figure 13 (a), the 
CODA design generator 
produces the design 
fragment illustrated in 
Figure 13 (b) and links 
the data store to the new 
data-abstraction module.  
Other CODARTS 
heuristics lead to similar 
rules for identifying 

(c) Module Structuring Rule - Data-abstraction Module

if node N is a data store and
node N is accessed by multiple transformations

then
create a data-abstraction module D
record the decision and rationale in the design history for module D
denote the traceability between node N and module D

fi
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device-interface modules, user-interface modules, subsystem-interface modules, state-
transition modules, function-driver modules, and algorithm-hiding modules.  After the 
initial software modules are identified, another handful of rules can be used to allocate 

any remaining nodes to software modules. 
After the final module structure is set, the CODA design generator, using 21 rules, 

can construct automatically the operations provided by each module and the parameters 
required for each operation.  For example, Figure 13 (c) gives a rule for mapping 
functions to operations in three, specific types of modules: algorithm-hiding modules, 
function-driver modules, and data-abstraction modules.  Figures 13 (a) and (b) show an 
example of the application of this rule to a design fragment.  In this case, a data-
abstraction module, Desired Speed, traces in part from a function, Select Desired Speed, 
which receives a control flow, Trigger, from a transformation, Cruise Control, which 
does not trace to the module named Desired Speed.  Here the function, Select Desired 

Figure 13. Rule to Create a Module Operation 
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Speed, represents an operation that the data-abstraction module must provide to another 
module.  Figure 13 (b) shows the updated design fragment created by an execution of the 
rule defined in Figure 13 (c). 

Twenty additional rules, similar in spirit to that shown as Figure 13 (c) above, 
complete the reasoning needed to generate all the operations and associated parameters 
required for all the software modules found in a design.  After the design generator 
identifies both the modules and tasks in independent views, additional knowledge is 
needed to integrate the two views. 

 
5.4.4 Task and Module Integration Knowledge. The CODARTS design method 

includes guidance about combining the task and module views into an integrated software 
design.  The CODA design generator represents this guidance as production rules 
organized into three decision-making processes: (1) determine module placements, (2) 
link tasks and external modules, and (3) link external modules.  The first process 
encompasses 10 rules that separate modules into two categories: those that are executed 
by a single thread and those that are executed by multiple threads.  In addition, these rules 
place single-threaded modules within the task that executes them.  The second process 
contains three rules that update multi-threaded modules to indicate which tasks invoke 
which operations in the modules.  The third process contains four rules that identify 

Figure 14. Rule to Place a State-Transition Module in a Task 
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which multi-threaded modules require which operations in other modules.  The following 
example illustrates the nature of task and module integration. 

Figure 14 (c) gives a rule that identifies a single-threaded, state-transition module 
and places that module within the task that executes it.  Figure 14 (a) shows a fragment 
from a flow diagram model, and Figure 14 (b) shows a fragment from a related design.  
The design generator defined the state-transition module, Cruise Control, during module 
structuring and the task, Control Cruising, during task structuring.  Through the execution 
of the rule defined in Figure 14 (c), the design generator links the two elements into an 
integrated view, specifying that the state-transition module is contained within the task.  
The "Contains" relationship denotes two properties: (1) the state-transition module is a 
single-threaded module executed only by the containing task, and (2) the state-transition 
module is hidden lexically within the containing task. 

5.5 Checking Completeness and Consistency. Each design produced by CODA is 
an instance of the design meta-model generated from an instance of the requirements 
meta-model. This fact enables CODA to check each design for completeness, relative to 
the input data/control flow diagram, and for consistency, relative to the constraints of the 
design meta-model. These checks can help a designer to ensure that the design is well 
formed and that no details have been overlooked. CODA writes the results of this 
completeness and consistency check, along with an index of the tasks and modules 
generated for the design, as a design summary. In terms of completeness, CODA checks 
for the following conditions: (1) each transformation on the flow diagram is allocated to 
at least one task, (2) each transformation and data store is allocated to a module, and (3) 
each arc is allocated to appropriate elements in the design. During each check, CODA 
lists elements on the flow diagram that remain unallocated. For consistency, CODA 
checks that the design instance satisfies all constraints in the design meta-model, for 
example: (1) each module is either contained within or accessed by a task or another 
module, (2) each module provides at least one operation, (3) each operation is provided 
by a module, (4) each task receives at least one input and writes at least one output, (5) 
each internal event is both generated by and accepted by a task, (6) each external event 
and timer are accepted by a task, (7) each datum is either read or written by a task, (8) 
each message is either sent and received by a task or is carried as a parameter within 
another message, (9) each queued message is held by a queue, and so on through the 39 
constraints the must be satisfied. Each constraint violation is specifically reported so that 
the designer can investigate. 

Completeness and consistency checking is implemented by treating each design and 
flow diagram instance as an object-oriented database. When checking for completeness, 
each predicate is encoded as an object-oriented query that asks if a specific element on 
the flow diagram does not have traceability to an appropriate element in the design. 
When checking for consistency, each predicate, representing some constraint, is encoded 
as an object-oriented query against the database. Some of these queries can be quite 
complex. In most cases, a consistency query first checks for the existence of any single 
instance that violates a constraint. Once a specific constraint is violated, a query then 
checks for every instance that violates the constraint, and reports each violation. 

Viewing the meta-model as the schema for an object-oriented database opens up 
additional power because instances of meta-model can then be queried in an ad hoc 
manner. CODA implements some of these ad hoc queries in a canned form that a 
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designer can use to answer a range of questions, such as which design elements follow 
from which elements on a flow diagram and vice versa. This approach also opens the 
door to recall the rationale used to generate each element on the design. 

5.6 Capturing and Recalling Design Rationale. Whenever the CODA design 
generator takes a design decision the decision is recorded in human-readable text 
assigned to the relevant design element. Using the query interface provided by CODA, a 
designer can ask interactively for an explanation of any element in a design instance. The 
query interface sends an explain message to the appropriate design element, which then 
writes its design history to the display.  For each decision made about the design element, 
the design element reports the rule used to make the decision, the action taken, and the 
rationale for the action. In addition, a designer can request that a decision trace file be 
generated during a design session. In this case, a record of all design decisions is also 
available immediately after the design has been generated.  
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6. Case Study: Automobile Cruise-Control Subsystem 
 
To illustrate the practical application of the ideas discussed in Section 4, this section 
describes how CODA generates a design for an automobile cruise-control subsystem. 
Only a small excerpt is given; the entire case study is described elsewhere [21].  In what 
follows, the CODA model analyzer transforms a fragment from a flow diagram model 
into a COBRA model by annotating the flow diagram with labels that represent semantic 
concepts from the COBRA meta-model discussed previously in Section 5.1.  From the 
annotated flow diagram, the CODA design generator interacts with an experienced 
designer to produce a concurrent design.  CODA is also capable of generating a design 
for a novice designer, who gives no guidance during the design generation. The ten 
designs evaluated in Section 7 include designs generated both with and without human 
assistance. 

 
6.1 Applying the CODA Model Analyzer. The data-flow model fragment in Figure 

15 uses RTSA notation, describer in Figure 1, to depict the fundamental speed control 
aspects of a cruise-control system.  Figure 15 also represents the output of the CODA 
model analyzer.  Each RTSA syntactic element on the flow diagram is annotated with a 
label, in square brackets, which corresponds to one of the 36 COBRA semantic concepts 
listed in Figure 4. (Disables, Enables, and Triggers are not annotated because the labels 
would be redundant.)  Each annotation depicts the COBRA semantic concept assigned by 
the model analyzer to the associated syntactic element. The CODA model analyzer 
inferred the correct COBRA semantic concepts for every element of the flow diagram, 
consulting with the designer on only one point: whether terminators represented devices.  
When the designer is unable to classify the terminators, the model analyzer assumes, 
correctly in this case, that all terminators represent devices. In cases where the 
assumption proves incorrect, then the resulting design would also prove incorrect. The 
automated capture of design rationale helps the designer to identify instances where 
assumptions were used. 

Once the semantic classifications are completed, the model analyzer checks each 
element to determine if additional information must be supplied.  In Figure 15, six event 
flows represent timers.  The model analyzer ensures that the designer provides a positive 
period for each timer.  The model analyzer also discovers a system input from an 
asynchronous device, the cruise control lever.  The model analyzer asks the designer to 
provide a value for the maximum rate at which these inputs are expected to arrive. After 
all the necessary information has been obtained, the model analyzer checks the semantic 
classifications and the axioms for each element in the flow diagram.  In this case, all of 
the concepts are properly classified and all the axioms are satisfied.  Had discrepancies 
been detected, the designer would be required to correct them prior to invoking the 
CODA design generator. 

 
6.2 Applying the CODA Design Generator. After analyzing the flow diagram in 

Figure 15, an experienced designer decides to generate a concurrent design, beginning 
with task structuring.  The designer chooses a target environment and then invokes the 
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CODA design generator to structure tasks for the design.  The resulting design, as 
generated by CODA, is shown in Figure 16. 

 

6.2.1 Structuring Tasks. The design generator begins by allocating candidate tasks for 
each of three transformations in Figure 15, Maintain Speed, Resume Cruising, and 
Increase Speed.  The design generator uses the CODARTS criterion for identifying 
control tasks to allocate additional candidate tasks based on another transformation, 
Cruise Control.  The remaining tasks identified by the design generator result from 
device-interface objects. The design generator allocates a task from each of three device-
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interface objects, Brake, Engine, and Throttle, based on the CODARTS criterion for 
identifying periodic input/output tasks.  The design generator also allocates a task from 
another device-interface object, Cruise Control Lever, based on the CODARTS criterion 
for identifying asynchronous input/output tasks. 

Next, the design generator examines the remaining, unallocated transformations, in an 
effort to allocate them to appropriate tasks based upon CODARTS criteria for sequential 

and control cohesion or upon guidance elicited from the designer.  In this case, the design 
generator needed no guidance from the designer.  Table 2 shows the initial task 
structuring decisions made by the design generator during this decision-making process. 

During the next decision-making process the design generator examines the set of 
candidate tasks in an effort to combine tasks, where feasible.  The design generator 
combines three tasks (1-3) based on mutual exclusion because none of the constituent 
transformations, Increase Speed, Maintain Speed, and Resume Speed, can execute 
simultaneously.  The design generator combines the Brake and Engine tasks, Task 5 and 
Task 6, respectively, because these periodic input tasks operate with identical, 100 ms, 
periods.  The final task structuring, generated by CODA, is given in Table 3.  

Figure 16. A Concurrent Design Generated by CODA from the Data-Flow Diagram 
Fragment Given in Figure 15. 
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6.2.2 Defining Task Interfaces. After structuring tasks, the designer decides to 

continue building the design by defining interfaces between the tasks.  First, the design 
generator determines the external interfaces for each task.  Incoming data flows from 
devices, outgoing data flows to devices, and incoming event flows from devices are 
allocated to inputs, outputs, and interrupts, respectively, for the appropriate tasks.  Each 
timer event flow stimulating a task is mapped to a timer interface for the stimulated task. 
As a last step, all data and event flows exchanged between tasks are identified and 
marked for subsequent consideration. 

 
Table 2.  Candidate Tasks Allocated by the CODA Design Generator 

 
Candidate Tasks Transformation Structuring Criterion 
Task 1 Increase Speed Controlled Periodic Task 
Task 2 Maintain Speed Controlled Periodic Task 
Task 3 Resume Speed Controlled Periodic Task 
 
Task 4 

Cruise Control  
Select Desired Speed 
Clear Desired Speed 

Control Task  
Control Cohesion 
Control Cohesion 

Task 5 Brake Periodic Input/Output Task 
Task 6 Engine Periodic Input/Output Task 
Task 7 Throttle Periodic Input/Output Task 
Task 8 Cruise Control Lever Asynchronous Input/Output Task 

 
Table 3.  Summary of Task Structuring Decisions Made by CODA  

 
Task Transformations Allocated Structuring Criterion 
 
Control Auto Speed 

Increase Speed 
Maintain Speed 
Resume Speed 

Controlled Periodic Internal 
 Tasks 
Mutual Exclusion 

 
Control Cruising 

Cruise Control 
Select Desired Speed 
Clear Desired Speed 

Control Task 
Control Cohesion 

 
Monitor Auto Sensors 

Brake 
Engine 

Periodic Device I/O Tasks 
Temporal & Functional 
 Cohesion 

Adjust Throttle Throttle Periodic Device I/O Task 
Monitor Cruise Control 
Lever 

Cruise Control Lever Asynchronous I/O Task 

 
Next, the design generator considers how event flows between pairs of tasks might 

be allocated. The design generator allocates event flows from the Monitor Auto Sensors 
and Monitor Cruise Control Lever tasks to queued messages.  These events flow into a 
state-transition diagram and, thus, none should be missed and their arrival order should 
be preserved.  In addition, the two input tasks that generate these events should not be 
delayed waiting for the Control Cruising task to accept the events.  The design generator 
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maps all control flows from the Control Cruising task to the Control Auto Speed task 
onto a single tightly coupled message.  The design generator selects this mapping because 
the Enable and Disable signals are transmitted during a state-transition, and thus the 
sending task requires synchronization with the task receiving these control flows.  

The design generator is less certain how to map the event, Reached Cruising, which 
flows from the task Control Auto Speed to the task Control Cruising.  In general, this 
decision depends upon whether the sender of the event needs to synchronize with the 
receiver of the event.  The design generator cannot determine if this is the case. Since the 
designer is using CODA in its experienced-designer mode, CODA asks the designer 
whether synchronization is required for this event.  In this case, the designer says 
synchronization is not required, so the design generator maps the event onto a queued 
message. 

After deciding how to map all the events that flow between tasks, the design 
generator next considers how to map all the data flows between pairs of tasks.  In this 
case, three data flows must be considered. Each of these data flows is an instance of 
Throttle Value. As Figure 15 shows, these data flows arrive at the Throttle transformation 
from three transformations, Maintain Speed, Resume Cruising, and Increase Speed. 
These three transformations have been combined into a single task that is separate from 
the task that controls the Throttle.  The design generator, uncertain about the 
synchronization requirements for these data flows, consults the designer for additional 
information.  The designer indicates that the sender and receiver must rendezvous around 
these data flows; subsequently, the design generator maps all three data flows to a single 
tightly coupled message from the task Speed Control to the task Adjust Throttle.  

Next, the design generator recognizes that one task, Cruise Control, receives queued 
messages from multiple sources.  Since the designer is using CODA in experienced 
mode, the design generator offers an opportunity to assign varying priorities to these 
messages.  In this case study, the designer declines the offer.  The design generator then 
examines the facilities available in the intended target environment and defines 
appropriate mechanisms for holding queued messages.  Since the target environment 
provides message queuing services and tasks exchange queued messages at a single 
priority, the design generator allocates a first-in, first-out message queue for each task 
that receives queued messages.  A summary of the task interfaces generated by CODA is 
given in Table 4. 

6.2.3 Structuring Information-Hiding Modules. Before the design can be completed, 
the designer must apply information-hiding criteria to identify modules.  The CODA 
design generator makes most of the module structuring decisions without consulting the 
designer; however, since the designer is operating in experienced mode, the design 
generator consults the designer in a few cases where the designer’s insights might 
improve upon the decisions. 

The design generator begins module structuring by considering which 
transformations and data stores should form the basis for candidate information-hiding 
modules.  The design generator discovers three transformations to combine into a single, 
function-driver module, two data stores from which to allocate data-abstraction modules, 
one transformation that forms the basis for a state-transition module, and four 
transformations that lead to device-interface modules. 
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Table 4. Summary of Task Interface Decisions Made by CODA 

 
Interface Element Data/Control Flows Allocated Allocation Criteria 
Auto Sensor Event Engine On, Engine Off,  

Brake Pressed, Brake Released 
Queued Message 

Monitor Auto Sensors Engine Strobe and Brake Strobe Timer 
Engine Input Engine Data Input 
Brake Input Brake Data Input 
CC Lever Event Accel, Cruise, Off, Resume Queued Message 
Lever Interrupt Lever Strobe Interrupt 
Cruise Control Input Cruise Control Data Input 
 
Speed Command 

Enable/Disable Maintain Speed 
Enable/Disable Increase Speed 
Enable/Disable Resume Cruising 

 
Tightly- Coupled Message 

Reached Cruising Reached Cruising Queued Message 
Maintain Timer Maintain Strobe Timer 
Resume Timer Resume Strobe Timer 
Increase Timer Increase Strobe Timer 
Adjust Throttle Request Throttle Value (3) Tightly-Coupled Message 
Adjust Throttle Timer Throttle Strobe Timer 
Throttle Position Throttle Position Output 

 
Next, the design generator attempts to allocate any unallocated transformations and 

data stores to existing or new modules.  Two unallocated transformations, Select Desired 
Speed and Clear Desired Speed, are mapped to functions incorporated into an existing 
data-abstraction module, Desired Speed.  

At this stage, the modules in the design are established and the design generator next 
constructs the operations and associated parameters required by each module.  This 
occurs without consulting the designer. Table 5 provides a summary of the module 
structuring decisions made by CODA for this case study.  

 
Table 5.  Summary of the Module Structuring Decisions Made by CODA 

 
Module Transformation / Data Store Structuring Criteria 
 
Control Auto Speed 

Increase Speed 
Maintain Speed 
Resume Speed 

State-Dependent, Function-
 Driver Module 

 
Desired Speed 

Desired Speed 
Clear Desired Speed 
Select Desired Speed 

Data-Abstraction Module 
DAM Update Operation 

Cruise Control Cruise Control State-Transition Module 
Throttle Throttle Device-Interface Module 
CC Lever Cruise Control Lever Device-Interface Module 
Brake Brake Device-Interface Module 
Engine Engine Device-Interface Module 
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6.2.4 Integrating Tasks and Modules. Once task and module structuring are 

completed, the designer asks the CODA design generator to integrate these two views.  
The design generator first determines the logical placement of the eight modules, relative 
to the five tasks.  Device-interface modules for unshared devices are placed within the 
tasks that access the associated device; so, for example, the Brake module and the Engine 
module go inside the task named Monitor Auto Sensors.  Modules accessed by a single 
task, such as Speed Control, which is accessed only by the task Control Auto Speed, are 
placed within the accessing task. Modules accessed by multiple tasks, such as Desired 
Speed, are placed outside any task. 

Once the relationships between tasks and modules are determined completely, the 
design generator examines possible connections between modules residing outside any 
task.  Where an operation in one such module invokes an operation in another, the design 
generator establishes a relationship stating that the invoking operation requires the 
invoked operation.  For each module that provides operations required by another 
module, the design generator creates a relationship indicating that the providing module 
serves the requiring module.  For example, in this case study, an operation, Select, 
provided by the module Desired Speed, requires another operation, Read, provided by the 
module Current Speed.  Current Speed, then, serves Desired Speed.  All of these 
decisions are made without consulting the designer. 

At this point the design is complete. When the designer requests that the design be 
written, the design generator constructs a specification and design history for each task 
and module. 

7. Evaluation  
 

The approach described in the preceding sections was mapped onto various 
knowledge representation techniques provided by an expert-system shell, CLIPS Version 
6.0 [29], to produce CODA.  CODA was then applied to four real-time problems that 
often appear in the literature: an automobile cruise control and monitoring system, a robot 
controller, an elevator control system, and a remote temperature sensor.  For each 
problem, CODA was used to analyze a flow diagram model and then to generate one or 
more concurrent designs. 

The following discussion evaluates the effectiveness of the knowledge-based 
approach to design generation, as embodied in CODA.  Two questions are addressed.  
First, what degree of automation was achieved by CODA on the four real-time problems 
to which it was applied?  Second, how do the designs generated by CODA, with and 
without human assistance, compare with designs produced by a human designer for the 
same problems?  

 
7.1 Degree of Automation Achieved with CODA. CODA automates two aspects of 

the design process: model analysis and design generation.  The degree of automation 
achieved for each of these aspects is considered in turn below. 

7.1.1 Automation Achieved with the Model Analyzer. During model analysis, CODA 
classified 358 elements on data/control flow diagrams.  Of these, 308 elements, or 86%, 
required no help from the designer: 290 elements, or 81%, were classified automatically, 
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while 18, or 5%, were data stores, which are directly represented using RTSA notation.  
The remaining 50 elements, or 14%, were classified after interaction between CODA and 
a designer.  For 29 elements, or 8%, CODA asked the designer whether a terminator 
represented a device, external subsystem, or user role.  The remaining classification 
decisions where CODA required help were split between two categories: for eight 
elements, or 2%, CODA made a tentative classification that the designer had to confirm 
or override, and for the remaining 13 elements, or 4%, CODA required additional 
information from the designer in order to make a classification. Further information about 
the performance of the model analyzer can be found elsewhere [22]. 

7.1.2 Automation Achieved with the Design Generator. The CODA design generator 
was used to generate ten concurrent designs from data/control flow diagrams, augmented 
by the model analyzer with labels representing COBRA semantic concepts.  Of the 1,571 
CODARTS design decisions required to generate the ten designs, 1,527, or 97%, were 
taken without human intervention. Tables 6, 7, 8, 9, and 10 provide further detail. 

Table 6 contains a summary of the 189 task structuring decisions made by CODA, 
where 82 decisions involved identifying tasks using the task structuring criteria and 107 
decisions involved reducing the number of tasks using the task cohesion criteria (Sections 
3 and 4.4.1). Seven decisions, all involving task mergers, used human assistance.  Six of 
these decisions involved assignment of data transformations to an existing task in cases 
where the flow diagram indicates multiple possibilities.  In general, choosing an 
appropriate task requires application-specific knowledge about the functions that each 
data transformation performs.  CODA also asked the designer for help before combining 
two tasks with harmonic periods. An experienced designer might be able to discern 
discrepancies in task priority in cases where tasks might otherwise be combined based on 
temporal and functional cohesion. 

 
Table 6.  Automation Achieved by CODA during Task Structuring 

 
Design Decision Total Unassisted  Assisted 
All Task Structuring Decisions 189 182 ( 96%) 7 ( 4% ) 

Identify Tasks (using structuring criteria) 82 82 (100%) 0  
Input/Output Tasks 35 35 (100%) 0 
Internal Tasks 45 45 (100%) 0 
Resource Monitor Tasks 2 2 (100%) 0 

Merge Tasks (using cohesion criteria) 107 100 ( 94%) 7 ( 6% ) 
Control Cohesion 16 16 (100%) 0 
Mutual Exclusion 6 6 (100%) 0 
Sequential Cohesion 66 60 ( 91%) 6 ( 9% )
Task Inversion 8 8 (100%) 0 
Temporal/Functional Cohesion 11 10 ( 91%) 1 ( 9% )

 
Table 7 summarizes the 479 decisions taken by CODA when defining interfaces 

between tasks.  CODA made 95%, or 454, of the needed decisions without any 
assistance.  These included all 143 decisions required to identify data flows and control 
flows exchanged between tasks.  Allocating control flows proved relatively easy for 
CODA.  Two of 130 control flow allocations used designer assistance.  Both cases 
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involved ambiguity about the synchronization required when tasks exchanged a control 
flow.  CODA made relatively liberal use of designer aid to allocate 170 data flows.  In 20 
of the 170 cases, CODA asked the designer about synchronization requirements 
surrounding a data flow.  Allocating queue interfaces also proved relatively easy.  Here, 
CODA consulted with a designer in three cases, in order to determine message priorities.  
 

Table 7.  Automation Achieved by CODA during Task-Interface Definition 
 

Design Decision Total Unassisted  Assisted 
All Task Interface Decisions 479 454 ( 95%) 25 ( 5% ) 

Identify Inter-Task Exchanges 143 143 (100%) 0  
Allocate Data Flows 170 150 ( 88%) 20 ( 12%) 

Input 53 53 (100%) 0 
Output 37 37 (100%) 0 
Queued Message 52 42 ( 81%) 10 ( 19%)
Tightly Coupled Message 28 18 ( 64%) 10 ( 36%)

Allocate Control Flows 130 28 ( 99%) 2 ( 1% ) 
Hardware Interrupt 28 28 (100%) 0 
Timer 38 38 (100%) 0 
Software Interrupt  20 20 (100%) 0 
Tightly Coupled Message 15 13 ( 87%) 2 ( 13%)
Queued Message 29 29 (100%) 0 

Allocate Queue Interface 36 33 ( 92%) 3 ( 8% ) 
Assign Priorities 3 0 3 (100%)
Allocate Messages 33 33 (100%) 0 

 
Table 8 reveals the performance of CODA while structuring information-hiding 

modules.  Here, CODA made 163 of the 175 decisions without assistance.  Identifying 
modules required no designer help, because the model analyzer had classified 
transformations on the flow diagrams so that the CODA design generator could easily 
identify modules.  To reduce the number of modules, CODA turned to a designer for help 
in 12 of 81 cases.  In one form or another, each of the 12 cases involved application-
specific knowledge about the function of data transformations.  In some cases, functional 
cohesion provided sufficient reason to combine modules.  CODA has no insight into 
functional issues without consulting a designer. 

While structuring information-hiding modules, CODA also defines module 
interfaces.  As shown in Table 9, CODA required no help to make the 525 decisions that 
were required to define module interfaces.  This result occurred because CODA encodes 
a predetermined strategy to define module interfaces.  A human designer might choose 
among a wide range of strategies to create module interfaces. 

Table 10 reports the automation achieved by CODA when integrating the task and 
module views of concurrent designs.  All 203 decisions required were made by CODA 
without assistance.  The decisions accomplished three objectives. First, 109 decisions 
determined how modules would be placed relative to execution threads for the various 
tasks in the designs. Second, 54 decisions generated calls from tasks to specific 
operations in modules that were accessed by multiple threads.  Finally, 40 decisions 
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generated calls from operations in one shared module to specific operations in another 
shared module. 

 
Table 8.  Automation Achieved by CODA while Structuring Information-Hiding 

Modules 
 

Design Decision Total Unaided  Assisted 
All Module Structuring Decisions 175 163 ( 93%) 12 ( 7% ) 

Identify Modules 94 94 (100%) 0  
Device-Interface Module (DIM) 53 53 (100%) 0 
State-Transition Module (STM) 8 8 (100%) 0 
Data-Abstraction Module (DAM) 29 29 (100%) 0 
Algorithm-Hiding or Function-
Driver Module (AHM or FDM) 

4 4 (100%) 0 

Reduce Modules 81 69 ( 85%) 12 ( 15%) 
Operation of DAM 48 48 (100%) 0 
Sequential/Functional Cohesion 25 17 ( 68%) 8 ( 32%)
Merge DAMs  8 4 ( 50%) 5 ( 50%)

 
Table 9.  Automation Achieved by CODA when Defining Module Interfaces 

 
Design Decision Total Unassisted  Assisted 
All Module-Interface Definition Decisions 525 525 ( 100%) 0 

Determine Module Operations 413 413 (100%) 0  
DIM Operation 173 173 (100%) 0 
STM Operation 8 8 (100%) 0 
DAM Operation 48 48 (100%) 0 
AHM or FDM Operation 124 124 (100%) 0 
Operation Internal to Module 59 59 (100%) 0 

Determine Additional Operation Parameters 112 112 (100%) 0  
 
Table 10.  Automation Achieved by CODA when Integrating Tasks and Modules 
 

Design Decision Total Unassisted  Assisted 
All Task and Module Integration Decisions 203 203 ( 100%) 0 

Place Modules Relative to Execution Threads 109 109 (100%) 0  
Generate Task to Module Calls 54 54 (100%) 0  
Generate Module to Module Calls 40 40 (100%) 0  

 
7.2 Comparison of Generated Designs with Human Designs.  The four case 

studies reported in this paper consist of real-time problems, specified with text, 
data/control flow diagrams, and, where applicable, state-transition diagrams, taken from 
the literature.  For each of these problems, at least one design, generated by a human 
designer, exists in the literature [7, 11].  This allows the solutions generated by CODA to 
be compared with existing solutions from human designers.  The designs generated by 
CODA exhibit minor differences from the human designs.  Differences should certainly 



Draft 08/28/00 

 36

be expected because a human designer must make each and every decision when 
manually producing a design, whereas CODA attempts to minimize the interaction with 
the human designer by taking many decisions without consultation.  In the case studies, 
differences appear where human designers take design decisions based on knowledge that 
CODA does not possess and cannot elicit, or where CODA takes predetermined 
strategies when a human designer might choose among a wide range of options.  Table 11 
presents a quantitative look at the similarity between designs generated by CODA and 
designs developed by human designers. 

  
Table 11. Similarity among Designs 

 
 
 

Design 

 
Task 
Structuring 

Task 
Interface 
Definition 

 
Module 
Structuring 

Module 
Interface 
Definition 

Task & 
Module 
Integration 

All 
Design 
Decisions 

Cruise Control - 
Assisted CODA vs. 

Human 

1.00  
(48/48) 

1.00 
(68/68) 

.98  
(45/46) 

.97 
(123/127) 

.98 
(63/64) 

.98 
(347/353) 

Robot Controller - 
Assisted CODA vs. 

Human 

1.00 
(17/17) 

1.00 
(54/54) 

.95 
(18/19) 

.93 
(63/68) 

1.00 
(16/16) 

.97 
(168/174) 

Elevator Control 
System - Assisted 
CODA vs. Human 

.95 
(20/21) 

.89 
(33/37) 

1.00 
(15/15) 

.96 
(48/50) 

1.00 
(15/15) 

.95 
(131/138) 

Remote Temperature 
Sensor - Assisted 
CODA vs. Human 

.95 
(19/20) 

.89 
(31/35) 

 
N/A 

 
N/A 

 
N/A 

.91 
(50/55) 

Cruise Control - 
Unassisted CODA vs. 

Human 

1.00 
(48/48) 

.97 
(66/69) 

.91 
(42/46) 

.96 
(122/127) 

.92 
(60/65) 

.95 
(338/355) 

 
Each row of Table 11 reports the design decisions taken to produce two designs from 

the same specification. In each case, one design was produced by CODA, while the other 
design was produced by a human designer and reported in the literature.  Rows one 
through four report results when CODA could consult an experienced designer for 
assistance. The fifth row documents the performance of CODA in a case where every 
design decision was taken without consulting a human designer. Columns two through 
six report the design decisions applicable to a particular phase of the design process. 
Column seven accumulates all the design decisions reported across columns two through 
six.  Each cell contains a similarity metric, computed using the ratio shown in parentheses 
below the metric.  A similarity value of 1.00 indicates two designs are identical; the 
lower the value, the more the designs differ. The following formula defines the similarity 
metric, S. 

 
S  =  (max(CD, HD) - delta(CD, HD)) / max(CD, HD) 

 
In the formula, CD denotes the number of design decisions executed by CODA, whether 
assisted or not, to generate the design. HD denotes the number of design decisions taken 
by the human designer to produce the design. The delta function denotes the number of 
design decisions that differ between CD and HD. 
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Considering all design decisions, the similarity between designs generated by CODA 
and those produced by a human ranged from a low of .91 for the remote temperature 
sensor to .98 for the cruise control.  For the remote temperature sensor design, the human 
designers did not fully adhere to the CODARTS guidelines. Instead, the designers used 
an earlier version of the guidelines, called DARTS, which did not consider semantic 
interpretation of elements on the flow diagram model [10-11, 30]. No module structuring 
information is reported for the remote temperature sensor because the human designers 
allocated AdaTM packages rather than information-hiding modules; thus, these results 
cannot be compared legitimately with the module design generated by CODA.  

In the absence of assistance, as reported in the last row of Table 11, CODA relies 
solely on its built-in knowledge to resolve ambiguous or incomplete situations. These 
situations generally fall into four classes: (1) decisions about merging tasks, (2) decisions 
about merging modules, (3) decisions about the synchronization requirements between 
tasks, and (4) decisions about assigning priorities to inter-task messages. The CODA 
knowledge base contains default rules that take conservative decisions, which lead to 
valid designs that can be less efficient than designs generated with human assistance.  
When working without human assistance, CODA tends to generate designs that contain 
more tasks and modules.  In addition, without human input, CODA will generally map 
event and data flows to queued messages in order to avoid deadlocks and to enable tasks 
to execute freely whenever possible.  In some run-time systems, queued messages can 
take longer to exchange than tightly coupled messages. 

As the last row of Table 11 shows, even without assistance from an experienced 
designer, CODA can produce designs fairly similar (.95) to those produced solely by 
human designers.  This positive result occurs because the cruise control specification was 
developed with strong adherence to the COBRA guidelines and because the specification 
contained just a few situations where CODA might profit from consulting a designer.  In 
other cases, results obtained without human assistance can be expected to vary 
significantly depending on the number of decisions that CODA faces where a human 
designer might provide effective advice. 

8. Discussion 
In addition to the performance of CODA some other issues merit discussion. In Section 
8.1, the approach embodied in CODA is compared against some other approaches that 
aim to automate software design methods. Section 8.2 gives a summary of contributions 
from the current work, as described in this paper. 

8.1 Comparison of CODA with Other Approaches to Automate Software Design 
Methods. Table 12 compares CODA against the four approaches to design-method 
automation that were described earlier in Section 3.3.  The table indicates some advances 
achieved by CODA.  First, three methods, CAPO, EARA, and STES, produce sequential 
designs. While SARA produces a concurrent design, it does so by using a second 
behavioral model that restricts the parallelism present in the basic data flow diagram.  
CODA can produce a concurrent design from a single behavioral model, documented 
with a data/control flow diagram.  Second, since CAPO, EARA, STES and SARA use a 
single technique for design generation, either production rules or clustering algorithms, a 
number of desirable properties are difficult to realize in their design generators.  For 
example, completeness and consistency checking, which cannot be implemented with 
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clustering algorithms, can be implemented only with difficulty using rules.  CODA uses 
knowledge-based queries to automatically check a generated design for completeness and 
consistency.  Third, only two of the methods, EARA and CODA, provide explicit 
traceability from the behavioral model to the software design. For EARA, this traceability 
is strictly one-way, from specification to design.  For CODA, the traceability is bi-
directional. In addition, CODA alone automatically captures the rationale for design 
decisions.  Fourth, although most of the approaches require elicitation of information 
from a human designer, only CODA provides distinct operating modes to accommodate 
experienced and inexperienced designers.  Fifth, CODA alone can vary the generated 
designs to account for variations in the target environment.  Significant variations might 
include the availability of message queuing services and the number of signals permitted 
between tasks.  Many of the characteristics of a target environment become significant 
when constructing a concurrent design. 

 
Table 12.  CODA Compared with Other Automated Software Design Methods 

 
Research Project 

 
Feature CAPO STES EARA SARA CODA 
Input Model DFDs DFDs DFDs DFDs/SVD DFD/CFDs 
 
Output Model 

Structure 
Charts 

Structure 
Charts 

Structure 
Charts 

GMB / 
Structural 
Model 

Task/Module 
Specs/Design 
Meta-Model 

Decision Method Coupling/ 
Cohesion 

Structured 
Design 

Structured 
Design 

Mapping 
Rules 

COBRA/ 
CODARTS 

 
Underlying 
Techniques 

Clustering 
Algorithms 

Production 
Rules 

Rule 
Rewriting 

Production 
Rules 

Production 
Rules/ 
Semantic 
Modeling 

Completeness/ 
Consistency 
Checking 

 
No 

 
No 

 
No 

 
No 

 
Yes 

Traceability Implicit Explicit Implicit Implicit Explicit 
Design Rationale 
Capture 

No No No No Yes 

Interacts with 
Designer 

No Yes 
 

Yes Yes Yes 

Has a 
Experienced 
Mode and 
Inexperienced 
Mode 

 
No 

 
No 

 
No 

 
No 

 
Yes 

Varies Design 
With Target 
Environment 

 
No 

 
No 

 
No 

 
No 

 
To a limited 
extent 
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8.2 Contributions. Unlike previous approaches to design automation, the approach 
described and evaluated in this paper develops and exploits an underlying meta-model 
that can represent and reason about instances of requirements models, design models, and 
the relationships between the two. As a result, the approach leads to several 
improvements in the state-of-the-art in software design automation. First, the existence of 
a meta-model enables a designer to check design model instances for consistency and 
completeness with respect to the meta-model. Such consistency and completeness 
checking, not supported by previous design automation approaches, helps a designer to 
improve the quality of a design. Second, the meta-model enables the design automation 
system to explicitly and automatically track traceability between elements in a 
requirements model and elements in a design model. While a few design automation tools 
have previously supported traceability, the approach described in this paper provides bi-
directional traceability at a finer level of granularity, and also includes traceability 
constraints that can be used during automated consistency checking. More importantly, 
the approach discussed in this paper also automatically captures design rationale. Using 
the design rationale capture mechanism, a designer can review the reasoning behind 
various automated design decisions, and can determine if any of the decisions need to be 
overridden.  

Further, novice designers can use the rationale capture mechanism to learn the 
reasoning behind various steps and heuristics included in the design method that 
underlies the automated design mechanism. The approach can also compensate for novice 
designers. Specifically, when a designer is a self-declared novice, the design automation 
mechanism will not query the designer regarding various subtle issues likely to require 
the knowledge of an experienced designer. Instead, the design automation mechanism 
uses default assumptions to resolve these subtle issues without interacting with a novice. 
The resulting designs will be correct, but can be sub-optimal. When interacting with a 
self-declared experienced designer, the automation mechanism will pose questions 
regarding various subtle issues that may appear in particular designs. In these cases, the 
affected design decisions can be influenced by specific guidance elicited from the 
designer. In the absence of such guidance, the design automation mechanism remains 
prepared to use its default assumptions.  

Finally, the design automation mechanism provides some capability to vary the 
generated designs after taking into account specific design guidelines or specific traits of 
the intended target environment. Examples of design guidelines might include a task-
inversion threshold, priority-assignment algorithms, and task-allocation algorithms. 
Target environment traits of interest might include: (1) the existence or absence of shared 
memory, message passing mechanisms, and priority queues, (2) the maximum number of 
inter-task signals and task priorities supported by a target operating system, and (3) the 
number of processors. As implemented, the automated design mechanism can account in 
a limited form for many of these factors. More research remains to exploit this 
information in later phases of the design automation. For example, generated designs 
might be instantiated automatically for specific target platforms, and then the design 
could be simulated to assess its performance. 
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9. Future Research 
The work reported here suggests several directions for future research.  One class of 

research directions addresses extensions to the current work; a second class investigates 
issues beyond the scope of the current work. Each class is addressed in turn. 

 
9.1 Extensions to Current Work. The approach embodied in CODA might be 

extended to any software design methods that model behavior using graphical notations 
to represent data or control flow among semantic elements arrayed in directed graphs.  
For example, the semantic concepts in COBRA appear quite similar in intent to 
stereotypes in the Unified Modeling Language (UML) [6, 31-33]. UML collaboration 
diagrams appear similar in conception to flow diagrams used in COBRA. UML 
collaboration diagrams, properly labeled with stereotypes and augmented with additional 
information, could possibly be input to a design generator to produce a concurrent design. 

In another extension, future research might investigate the use of a design 
generator to automatically map a concurrent design onto specific hardware architectures. 
The work presented here addresses variations in target environments, but to a limited 
extent. For example, the message queuing and software signaling services provided by 
target environments are considered when CODA generates task interfaces. Larger issues, 
such as the number of processors and the availability of various forms of shared memory, 
have not been considered. In addition, various algorithms can be identified for assigning 
tasks to processors and for assigning priorities to tasks within each processor.  This 
information might be exploited to support automated mapping to specific hardware. 

In another extension, future research could investigate automated support for 
partitioning behavioral models into subsystems. The current research assumes that 
concurrent designs are generated for single subsystems only.  Many concurrent designs 
are mapped onto distributed systems of networked computers. Designers use various 
criteria for allocating elements from behavioral models to subsystems that can be 
distributed onto loosely coupled computing nodes.  These criteria might be automated. 

Additional research might investigate the scalability of the approach to larger 
problems. Checking a behavioral model to ensure that all axioms are satisfied can take 
quite some time as the size of the model increases.  In the current research, the largest 
problem tackled, an automobile cruise control and monitoring system, consisted of 58 
nodes and 112 directed arcs. For this model, checking axioms took about 15 seconds on a 
266 MHz Pentium II processor. Further research might establish the performance 
characteristics of the underlying model checking and design generation algorithms as the 
model size increases. 

9.2 Beyond the Current Work.  Evaluating the quality of the designs generated 
by CODA required comparison against the work of human designers on the same 
problems.  This comparison leaves open the issue of the quality of designs in general.  
How can software designs, no matter what their source, be assessed for quality?  The 
current work on CODA captures information about the frequency of task executions and 
about the maximum rate at which external stimuli arrive at the system. While not used in 
the current work, this information could facilitate future research regarding automated 
evaluation of the performance of designs using rate-monotonic scheduling theory or 
dynamic simulation.  Evaluating design quality along other dimensions, such as 
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maintainability, reliability, and testability, might also provide some interesting research 
challenges.  

10. Conclusions 
Advances in knowledge engineering hold potential for effective automation of 

software design methods.  This paper presented a knowledge-based approach, integrating 
semantic data modeling with production rules and knowledge-based queries, to automate 
COBRA, an object-based behavioral modeling method, and CODARTS, a software 
design method for concurrent and real-time systems.  The approach leads directly to an 
automated designer's assistant, CODA, which was applied to generate ten designs for 
four real-time problems. During the generation of the designs for these case studies, the 
design generator made 97% of all design decisions without consultation.  The remaining 
decisions involved a variety of cases calling for a designer's judgment.  When defining 
module interfaces and integrating the task and module views of concurrent designs, 
CODA uses predetermined strategies to achieve full automation that leads to acceptable 
results.  A human designer would be free to consider a wide range of options that might 
lead to designs exhibiting differences in detail from those generated by CODA. For the 
case studies, the similarity between designs generated by CODA and designs generated 
by human designers for the same problems varied from a low of .91 to a high of .98, 
where a similarity of 1.00 denotes identical designs. 

The approach described in this paper could assist designers to create concurrent 
designs. For example, CODA could be embedded in computer-aided software 
engineering (CASE) systems.  Most CASE systems enable a designer to enter flow 
diagrams and structure charts, or other representations of a software design; however, a 
human designer, outside the CASE system and without automated assistance, must 
perform the process of creating the software design from the flow diagrams.  Where a 
tool such as CODA is available, a designer could enter a flow diagram into a CASE 
system and then invoke automated assistance to generate a concurrent design.  Such 
automation can capture design decisions and rationale and can maintain traceability 
between elements on the flow diagram and components in the design. The CASE tool 
might also store designer decisions and reuse them when the design is changed. 
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